

NÖ Zukunftsbild 2050

Szenarien für ein Update des NÖ Klima- und Energiefahrplans

Projektbericht NÖ Zukunftsbild 2050 mit der Österreichischen Energieagentur – Austrian Energy Agency im Auftrag des Amtes der niederösterreichischen Landesregierung – Abteilung Umweltund Energiewirtschaft

St. Pölten, Mai 2025

Inhaltsverzeichnis

1.	Aufgabenstellung	1
2.	Executive Summary	2
3.	Szenarienannahmen im Überblick	3
3.1.	Sektor Verkehr	4
3.2.	Sektoren Gebäude, Industrie und Landwirtschaft	5
3.3.	Erneuerbare Aufbringung, Verbrauch Sektor Energie und Nichtenergetischer Verbrauch	6
4.	Ergobnicso Trondszonario	7
	Ergebnisse Trendszenario	
4.1.	Treibhausgasemissionen	7
4.2.	Energieverbrauch und erneuerbare Aufbringung	9
5.	Ergebnisse Energiewendeszenario	12
5.1.	Treibhausgasemissionen	12
5.2.	Energieverbrauch und erneuerbare Aufbringung	14
6.	Gegenüberstellung der Szenarien	17
6.1.	Treibhausgasemissionsentwicklung gesamt	17
6.2.	Kennzahlen im Vergleich	18
- 7	Ankana Dia wishtington Hakal fün sina Daduktian dan	
7.	Anhang – Die wichtigsten Hebel für eine Reduktion der Treibhausgase (THG) bis 2050	20

Abbildungsverzeichnis

Abbildung 1 - Entwicklung der Treibhausgasemissionen gesamt im Trendszenario zwischen 2005 u 2050 in Millionen Tonnen CO ₂ -Äquivalent aufgeteilt nach BLI-Sektoren	nd 7
Abbildung 2 - Entwicklung der Treibhausgasemissionen außerhalb des Emissionshandels im Trendszenario zwischen 2005 und 2050 in Millionen Tonnen CO ₂ -Äquivalent aufgeteilt nach BLI-Sektoren	8
Abbildung 3 - Endenergieverbrauch im Trendszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern	9
Abbildung 4 - Stromerzeugung im Trendszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern	10
Abbildung 5 – Fernwärmeerzeugung und Fernwärmeexport im Trendszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern	11
Abbildung 6 - Entwicklung der Treibhausgasemissionen gesamt im Energiewendeszenario zwischer 2005 und 2050 in Millionen Tonnen CO ₂ -Äquivalent aufgeteilt nach BLI-Sektoren	n 12
Abbildung 7 – Entwicklung der Treibhausgasemissionen außerhalb des Emissionshandels im Energiewendeszenario zwischen 2005 und 2050 in Millionen Tonnen CO ₂ -Äquivalent aufgeteilt nach BLI-Sektoren	h 13
Abbildung 8 - Endenergieverbrauch im Energiewendeszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern	14
Abbildung 9 - Stromerzeugung im Energiewendeszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern	15
Abbildung 10 - Fernwärmeerzeugung im Energiewendeszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern	16
Abbildung 11 - Entwicklung der Treibhausgasemissionen gesamt im Trendszenario und im Energiewendeszenario in Millionen Tonnen CO ₂ -Äquivalent aufgeteilt nach Sektoren. Reduktionspfade gemäß EU-Zielen bis 2030	17

1. Aufgabenstellung

Im Zuge der Aktualisierung des niederösterreichischen "Klima- und Energiefahrplan 2020 bis 2030" durch die Abteilung Umwelt- und Energiewirtschaft des Amtes der niederösterreichischen Landesregierung werden die Energiemengengerüste und darauf aufbauende Berechnungen des Ausstoßes an Treibhausgasen aktualisiert und in die Zukunft bis zum Jahr 2050 in Form von Szenarien projiziert. Dabei wird den beschleunigten Entwicklungen seit Beschlussfassung des derzeit gültigen NÖ Klima- und Energiefahrplans aus dem Jahr 2019 Rechnung getragen und die veränderten Rahmenbedingungen in punkto Treibhausgasemissionen, Energieeffizienz und Ausbau erneuerbarer Energieträger berücksichtigt.

Ausgehend von einem Referenzszenario, das die aktuellen Entwicklungen abbildet, wurde ein Energiewendeszenario erstellt, das eine weitgehende Reduktion der Treibhausgasemissionen bis 2050 erreicht und damit dem Ziel der Klimaneutralität Rechnung trägt. Für jedes Szenario wurde die Entwicklung von Energiebedarf, Energieaufbringung und Treibhausgasen in Anlehnung an die Sektoren der Bundesländer-Luftschadstoff-Inventur berechnet. Darüber hinaus wurden die wesentlichen Hebel zur Erreichung der Treibhausgas-Reduktionen identifiziert und beschrieben (siehe Anhang).

Die Österreichische Energieagentur – Austrian Energy Agency (im Folgenden "AEA" genannt) wurde mit der Erstellung der Szenarien und der Abschätzung der wesentlichen Handlungsfelder zur weitgehenden Reduktion der Treibhausgasemissionen beauftragt.

Aufgrund der Verfügbarkeit der offiziellen österreichischen Energie- und Treibhausgasbilanzen zum Startzeitpunkt des Projekts, wurde als Ausgangsjahr der Szenarien das Jahr 2022 gewählt.

Die Ergebnisse der beiden Szenarien zeigen, wie durch den Ausbau der erneuerbaren Energieproduktion, den Wechsel auf erneuerbare Energiesysteme und die Senkung des Energieverbrauchs die Treibhausgasemissionen so weit reduziert werden können, dass die Klimaneutralität bis 2050 weitgehend erreicht werden kann.

2. Executive Summary

Die Österreichische Energieagentur (AEA) hat im Hinblick auf die Aktualisierung des NÖ Klima- und Energiefahrplans zwei Szenarien für das Bundesland Niederösterreich erstellt. Auf der Grundlage eines Referenzszenarios wurde ein Energiewendeszenario entwickelt, das eine weitgehende Reduktion der Treibhausgasemissionen bis 2050 erzielt. Die Entwicklung des Energieverbrauchs, der Energieaufbringung und der Treibhausgasemissionen wurde für jedes Szenario bis 2050 berechnet.

Die wichtigsten Voraussetzungen und Annahmen für die Realisierung des Energiewendeszenarios sind ein ambitionierter Ausbau der erneuerbaren Energieproduktion durch Sonnen- und Windkraftwerke, die Dekarbonisierung des Verkehrsbereichs durch effiziente Antriebsarten, die Vermeidung von Kraftstoffexporten im Tank, Verkehrsverlagerung und -vermeidung sowie die Dekarbonisierung des Gebäudesektors durch thermische Sanierungen, Heizkesseltausch und eine Stabilisierung der konditionierten Fläche.

Darüber hinaus leisten neue Technologien wie CO₂-Abscheidung sowie die Nutzung der ganzen Bandbreite an zur Verfügung stehenden Energieträgern, wie Geothermie, Wasserstoff, Biomethan und e-Fuels einen entscheidenden Beitrag zur Dekarbonisierung und zeigen vor allem dort Wirkung, wo die Nutzung von Wind-, Sonnen- und Wasserkraft an ihre Grenzen stößt.

Im Energiewendeszenario zeigt sich, dass unter den angenommenen Rahmenbedingungen Niederösterreich bis zum Jahr 2030 einen wesentlichen Beitrag zu den Treibhausgas-Reduktionszielen des Bundes leisten kann. Mit minus 44 Prozent Treibhausgas-Reduktion zwischen 2005 und 2030 außerhalb der Emissionshandels-Bereiche erreicht Niederösterreich im Energiewendeszenario einen Reduktionsbeitrag in der Größenordnung der im Nationalen Energieund Klimaplan festgelegten Ziele für Österreich.

Darüber hinaus kann Niederösterreich im Energiewendeszenario bis 2050 die Treibhausgasemissionen außerhalb des Emissionshandels um bis zu 90 Prozent reduzieren und sich gleichzeitig bilanziell nahezu vollständig mit erneuerbarer Energie versorgen. Bereits im Jahr 2030 kann der Energiebedarf zu rund 55 Prozent aus erneuerbaren Energien gedeckt werden und trägt maßgeblich zu den nationalen Ambitionen beim Ausbau der erneuerbaren Energien bei.

In punkto Energieeffizienz ist im Energiewendeszenario von langfristigen Effizienzgewinnen bis 2050 auszugehen. Kurzfristig sind die Effizienzgewinne unter anderem aufgrund des nach den Pandemiejahren wieder ansteigenden Flugverkehrs und der Tatsache, dass Niederösterreich den Flugverkehr für die gesamte Ostregion abwickelt, als gering zu betrachten. Demnach sind bis 2030 in Bezug auf den im Bundes-Energieeffizienzgesetz genannten Referenzzeitraum acht Prozent Endenergieeinsparung und bis 2050 21 Prozent Endenergieeinsparung zu erwarten.

Betrachtet man im Gegensatz dazu das ebenfalls berechnete Trendszenario, bleiben die erreichten Zielwerte in punkto Treibhausgasreduktion, Erneuerbare Energie und Energieeffizienz unter den angenommenen Rahmenbedingungen deutlich hinter den Werten des Energiewendeszenarios zurück.

3. Szenarienannahmen im Überblick

Die wesentlichen Annahmen und deren Quellen finden sich in den nachfolgenden Tabellen im Überblick. Darauf aufbauend wurde die Modellierung der Szenarien durch die AEA erstellt. Die Aufteilung der Sektoren orientiert sich an der Sektorenaufteilung der Bundesländer-Luftschadstoff-Inventur. Ausgehend vom Bezugsjahr 2022 werden beide Szenarien bis ins Jahr 2050 projiziert und Zielerreichungsindikatoren berechnet.

Szenario 1: Trendszenario (WEM2050)

Das Trendszenario geht von einer Fortschreibung bestehender Trends aus. Die Abkürzung WEM steht für "with existing measures".

Szenario 2: Energiewendeszenario (WAM2050)

Das Energiewendeszenario geht von einem höheren Ambitionsniveau in fast allen betrachteten Bereichen aus. Die Abkürzung WAM steht für "with additional measures".

3.1. Sektor Verkehr

Sektor	Subsektor	Bereich	Trendszenario	Energie	wendeszenario	Quellen Trendszenario- Annahmen	Quellen Energiewendeszenario- Annahmen
Verkehr	Personen verkehr	Verkehrsleistung	Zunahme der Verkehrsleistung für PKW, Bahn und Bus	 Abnahme Verkehrsleistung PKW deutliche Zunahme Verkehrsleistung Bahn und Bus 		Annahmen AEA, Annahmen Land NÖ	Mobilitätsmasterplan 2030 für Österreich
		Dekarbonisierung	 Weitgehend dekarbonisierte Antriebe PKW, Bus teilweise Keine Dekarbonisierung Bahn 	Dek	ständige arbonisierung PKW, und Bahn	Annahmen AEA, Annahmen Land NÖ	Transition Mobility 2040, Annahmen Land NÖ
	Güterverkehr	Verkehrsleistung	Zunahme der Verkehrsleistung LKW und Bahn	 Stagnation Verkehrsleistung LKW Deutliche Zunahme Verkehrsleistung Bahn Vollständige Dekarbonisierung von LKW- und Bahnverkehr 		Annahmen AEA, Annahmen Land NÖ	Mobilitätsmasterplan 2030 für Österreich
		Dekarbonisierung	Keine Dekarbonisierung von LKW- und Bahnverkehr			Annahmen AEA	Transition Mobility 2040, Annahmen Land NÖ
	Flugverkehr	Verkehrsleistung	Wiederanstieg Treibstoff	Wiederanstieg Treibstoffbedarf auf Niveau 2019		Gespräch Flughafen Wien	Gespräch Flughafen Wien
		Dekarbonisierung	Weitgehende Dekarbonisierug lt. R	efuelEU	Vollständige Dekarbonisierung	EU-Vorgabe	Annahme AEA
	Kraftstoffexport		KEX bleibt stabil		KEX nimmt kontinuierlich ab	Annahme AEA	Annahme AEA

3.2. Sektoren Gebäude, Industrie und Landwirtschaft

Sektor	Bereich	Trendszenario	Energiewendeszenario	Quellen Trendszenario- Annahmen	Quellen Energiewendeszenario- Annahmen
Gebäude	Generelle Entwicklung	 Sanierungsrate ca. 1,5% p.a. Abriss- und Neubau ca. 0,5 % p.a. Rückgang Heizenergiebedarf ca. 0,5% p.a. durch Klimawandel Moderate Entwicklung der Wohnfläche je Person 			
	Heizsysteme	 Phase out Ölkessel Moderater Rückgang Gaskessel 		Annahme AEA/Land NÖ	
Industrie		 Dekarbonisierung auf Basis historischer Trends Wirtschaftswachstum 1,5 % p.a. 	0	Annahme AEA	Studie Transform Industry 2040
Landwirtschaft	Generelle Entwicklung	 Abnahme Rinder-, Schweine- und Geflügelbestand (lt. UBA Studie Szeanrio WEM/WAM+) Rückgang Landnutzungswechsel Grünland zu Ackerland (lt. UBA Studie WEM/WAM+) Düngermanagement Ackerland (lt. UBA Studie WEM/WAM+) 			t – Emissionszenarien in der irtschaft
	Dekarbonisierung	Keine Dekarbonisierung lw. Maschinen	Dekarbonisierung lw. Maschinen durch biogene Treibstoffe	Annahme AEA	Annahme AEA

3.3. Erneuerbare Aufbringung, Verbrauch Sektor Energie und Nichtenergetischer Verbrauch

Sektor	Bereich	Trendszenario	Energiewendeszenario	Quellen Trendszenario- Annahmen	Quellen Energiewendeszenario- Annahmen
Aufbringung	PV	Ausbau auf 6 TWh	Ausbau auf 10 TWh	Annahme Land NÖ	
	Windkraft	Ausbau auf 14 TWh	Ausbau auf 16 TWh	Annahme	Land NÖ
	Wasserkraft	+0,1 TWh ggü. derzeitiger normalis	sierter Erzeugung	Annahme	Land NÖ
	Fernwärme	Weitgehende Dekarbonisierung de	er Fernwärmeerzeugung	Abstimm	ung EVN
Verbrauch des Sektors Energie	Raffinerie Schwechat	Keine Veränderung der Produktion in Schwechat	 Dekarbonisierung der Produktion Schwechat Herstellung aller in NÖ benötigten synthetischen Treibstoffe für Flug- und Schiffsverkehr sowie Landwirtschaft 	Annahme AEA	Annahme AEA, Gespräch OMV
	Erdöl- und Erdgasförderung	Stabile Förderung von Erdöl und Erdgas	Kontinuierliche Abnahme der Förderung von Erdöl und Erdgas	Annahr	me AEA
Nichtenergetischer Verbrauch	Sonstige Produkte der Erdölverarbeitung	Produktion von Naphta, Bitumen und Schmiermittel in Schwechat	Keine Produktion mehr von Naphta, Bitumen und Schmiermittel in Schwechat	Annahr	ne AEA

4. Ergebnisse Trendszenario

4.1. Treibhausgasemissionen

Die Ergebnisse im Bereich Treibhausgasemissionen wurden nach Emissionssektoren der Bundesländer-Luftschadstoff-Inventur gegliedert. Insgesamt zeigt sich ein leichter kontinuierlicher Rückgang von 15,2 Mio. t CO₂eq im Jahr 2022 auf 12,3 Mio. t CO₂eq im Jahr 2050. Im Trendszenario können im Vergleich zu 2005 45 Prozent der gesamten Treibhausgasemissionen bis 2050 eingespart werden. Dadurch wird deutlich, dass unter den getroffenen Annahmen die Klimaneutralität im Trendszenario nicht erreichbar ist.

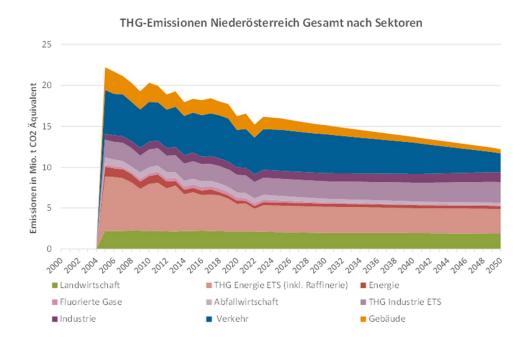


Abbildung 1 - Entwicklung der Treibhausgasemissionen gesamt im Trendszenario zwischen 2005 und 2050 in Millionen Tonnen CO_2 -Äquivalent aufgeteilt nach BLI-Sektoren

Die Treibhausgasemissionen in den Bereichen außerhalb des Emissionshandels (Non-ETS-Emissionen) sinken zwischen 2005 und 2030 um 27 Prozent. Zwischen 2005 und 2050 können die Non-ETS-Emissionen um die Hälfte reduziert werden.

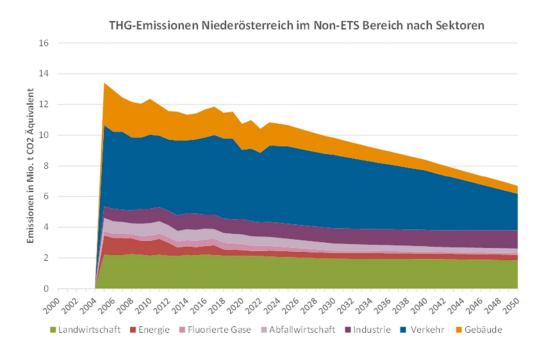


Abbildung 2 - Entwicklung der Treibhausgasemissionen außerhalb des Emissionshandels im Trendszenario zwischen 2005 und 2050 in Millionen Tonnen CO₂-Äquivalent aufgeteilt nach BLI-Sektoren

4.2. Energieverbrauch und erneuerbare Aufbringung

Der Endenergiebedarf ändert sich im Trendszenario kaum und stagniert auf hohem Niveau. Die in den Sektoren Verkehr und Gebäude erzielten Effizienzgewinne sind gerade groß genug, um den steigenden Energiebedarf des Industriesektors und Flugverkehrs zu kompensieren¹. Dadurch liegt die Energieeinsparung zwischen 2022 und 2030 bei einem Prozent, bis 2050 ist mit 6 Prozent zu rechnen. Ein wesentlicher Beitrag zu den Energiereduktionszielen laut Energieeffizienzgesetz kann nicht erzielt werden.

Die Anteile erneuerbarer Energie am Energieverbrauch steigen von 39 Prozent im Jahr 2022 auf 47 Prozent im Jahr 2030 und auf bis zu 71 Prozent im Jahr 2050. Eine vollständige Deckung des Energiebedarfs durch erneuerbare Energieträger ist damit im Trendszenario nicht realisierbar. Der Energiemix zur Deckung des Endenergiebedarfs enthält selbst im Jahr 2050 noch immer einen hohen fossilen Anteil.

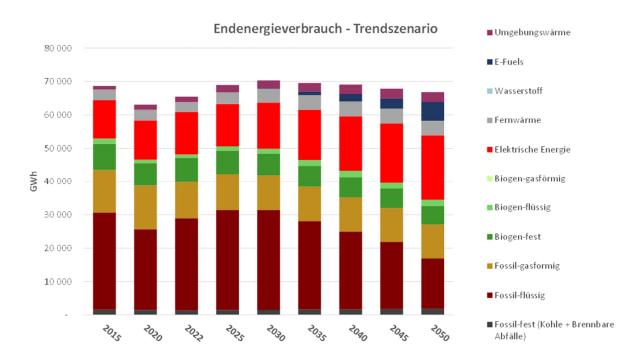


Abbildung 3 - Endenergieverbrauch im Trendszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern

Elektrische Energie wird zum wichtigsten Energieträger. Ab 2030 spielen E-Fuels eine Rolle, die hauptsächlich im Flugverkehr eingesetzt werden. E-Fuels werden zwar im Inland produziert, der dafür notwendige Wasserstoff muss allerdings importiert werden. Die biogenen Energieträger bleiben im Verlauf der Jahre auf einem konstanten Niveau. Eine moderate Steigerung ergibt sich bei Fernwärme und Umgebungswärme. Flüssige und feste fossile Energieträger werden zwar zurückgedrängt, sind aber weiterhin für Mobilität, Wärmeversorgung und Industrie notwendig.

9

¹ Der Energieverbrauch des internationalen Flugverkehrs wird in der Emissionsberechnung nicht berücksichtigt.

Obwohl der steigende Strombedarf weiterhin vollständig aus erneuerbaren Energien gedeckt werden kann, wird der im Vergleich zum Energiewendeszenario geringere Ausbau von Windkraft und Photovoltaik sowie die geringere Nutzung von Wasserstoff und Biogas dazu führen, dass die fossilen Energien im Kraftwerkspark nicht vollständig substituiert werden und z.B. in schnellstartfähigen Gaskraftwerken weiterhin Verwendung finden.

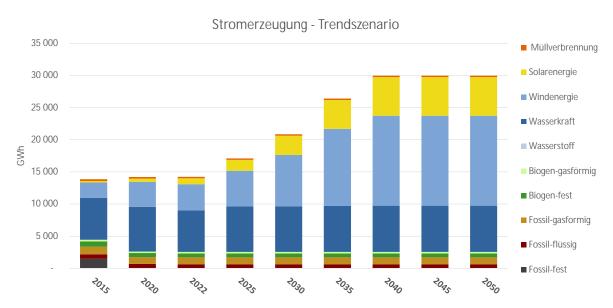


Abbildung 4 - Stromerzeugung im Trendszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern

Auch die Fernwärmeerzeugung erfolgt mittel- und langfristig beinahe vollständig aus erneuerbaren Energieträgern. Vor allem die Nutzung von Umgebungswärme und Geothermie wird eine maßgebliche Rolle bei der Dekarbonisierung der Fernwärme spielen. Aufgrund der thermischen Verbesserung des Gebäudebestands durch Sanierung und Neubau sowie klimatische Veränderungen geht der Fernwärmebedarf langfristig leicht zurück. Der in Abbildung 5 dargestellte Exportanteil ist bilanzieller Natur und stellt den Export der in der Raffinerie Schwechat erzeugten Wärme zur Versorgung der Bundeshauptstadt Wien dar.

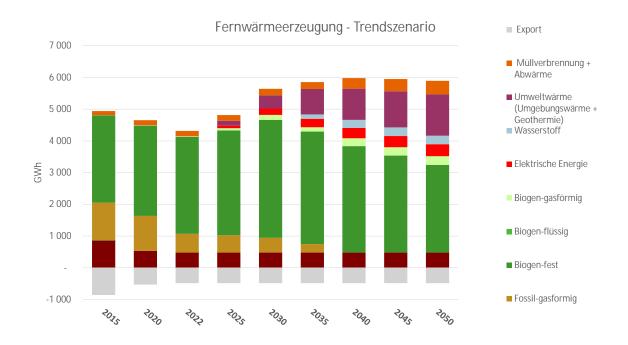


Abbildung 5 – Fernwärmeerzeugung und Fernwärmeexport im Trendszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern

5. Ergebnisse Energiewendeszenario

5.1. Treibhausgasemissionen

Unter den Annahmen des Energiewendeszenarios kommt es zu einer steilen Abnahme der Treibhausgasemissionen, die in Abbildung 6 nach den Bereichen der Bundesländer-Luftschadstoff-Inventur gegliedert dargestellt werden. Insgesamt können die THG-Emissionen im Vergleich zu 2005 bis 2050 um 94 Prozent reduziert werden. Bereits berücksichtigt wurde die technische Kompensation von Punktquellen über CO₂-Abscheidung in der Höhe von ca. 0,7 Mio.t CO₂eq, wie zum Beispiel prozessbedingte Emissionen aus der Zementindustrie. Lediglich im Bereich der Landwirtschaft verbleiben 1,3 Mio. t CO₂eq, die durch technische oder natürliche Senken kompensiert werden müssten, um vollständige Klimaneutralität zu erreichen.

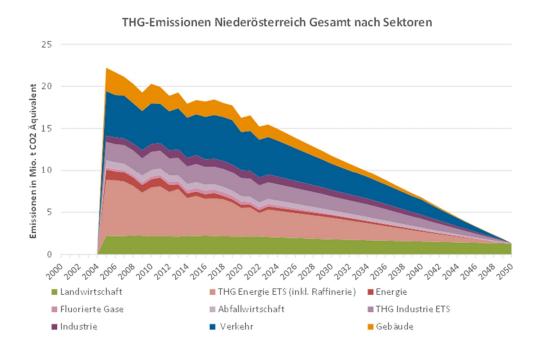


Abbildung 6 - Entwicklung der Treibhausgasemissionen gesamt im Energiewendeszenario zwischen 2005 und 2050 in Millionen Tonnen CO_2 -Äquivalent aufgeteilt nach BLI-Sektoren

In den Sektoren außerhalb des Emissionshandels (Non-ETS-Emissionen) können zwischen 2005 und 2030 44 Prozent der Treibhausgase eingespart werden. Damit kann Niederösterreich einen wesentlichen Beitrag zur Erreichung der Zielvorgaben auf Bundesebene leisten.

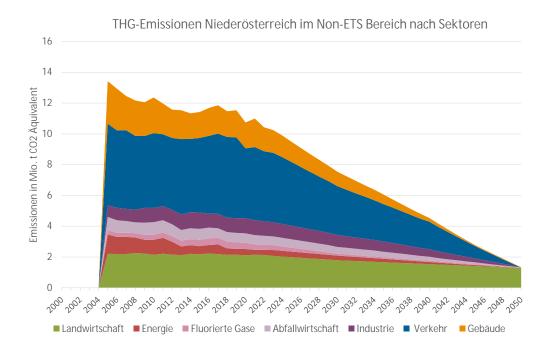


Abbildung 7 – Entwicklung der Treibhausgasemissionen außerhalb des Emissionshandels im Energiewendeszenario zwischen 2005 und 2050 in Millionen Tonnen CO_2 -Äquivalent aufgeteilt nach BLI-Sektoren

5.2. Energieverbrauch und erneuerbare Aufbringung

Im Energiewendeszenario kann der Endenergieverbrauch bis 2050 wesentlich gesenkt werden. Ursachen dafür sind im Wesentlichen der Umstieg auf effiziente Antriebe im Verkehrssektor, der verstärkte Einsatz von Wärmepumpen, thermische Sanierungen sowie die Abnahme der Heizgradtage aufgrund des Klimawandels. Lediglich im Industriesektor und beim Flugverkehr gibt es einen Anstieg des Energieverbrauchs aufgrund des angenommenen Wirtschaftswachstums und der Zunahme des Flugverkehrs². Die Endenergieeinsparung liegt zwischen 2022 und 2030 bei 8 Prozent, bis 2050 ist mit 21 Prozent zu rechnen. Damit kann ein Beitrag zu den Zielen laut Energieeffizienzgesetz geleistet werden.

Elektrische Energie gewinnt im Energiewendeszenario noch mehr an Bedeutung und wird auch hier zum wichtigsten Energieträger. Erneuerbarer Strom ermöglicht in Kombination mit erneuerbaren Gasen und synthetischen Treibstoffen (E-Fuels) langfristig einen vollständigen Ausstieg aus fossilen Energien für Mobilität, Raumwärme und Prozessenergie. Der Endenergiebedarf könnte im Jahr 2050 bilanziell vollständig aus erneuerbaren Energien gedeckt werden.

E-Fuels gewinnen vor allem in der Luftfahrt an Bedeutung, während Wasserstoff im Güterverkehr eingesetzt wird. E-Fuels werden zwar im Inland produziert, der dafür notwendige grüne Wasserstoff muss allerdings importiert werden. Alle anderen Energieträger können bilanziell betrachtet vollständig im Inland produziert werden.

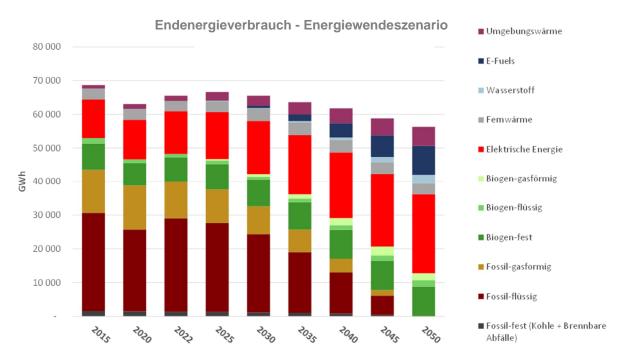


Abbildung 8 - Endenergieverbrauch im Energiewendeszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern

² Der Energieverbrauch des internationalen Flugverkehrs wird in der Emissionsberechnung nicht berücksichtigt.

Der Windkraft- und Photovoltaikausbau wird im Energiewendeszenario langfristig forciert. Der Strombedarf wird bilanziell vollständig aus erneuerbaren heimischen Energieträgern gedeckt. Systemdienliche schnellstartfähige Gaskraftwerke werden mit erneuerbaren Gasen wie zum Beispiel Biomethan oder Wasserstoff betrieben.

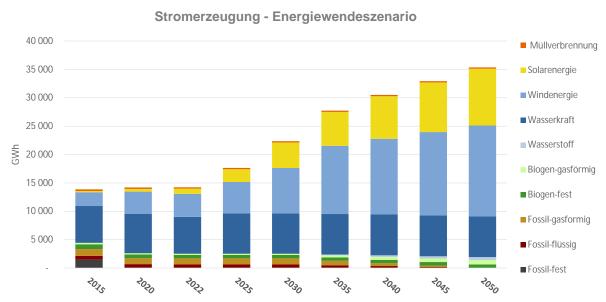


Abbildung 9 - Stromerzeugung im Energiewendeszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern

Die Fernwärmeerzeugung wird vollständig auf erneuerbare Energieträger umgestellt. Geothermie und Umgebungswärme haben dabei enorme Wachstumspotenziale. Die Nutzung der Biomasse stagniert auf hohem Niveau. Die stark gesteigerte Sanierungsrate sowie klimatische Veränderungen lassen den Wärmebedarf langfristig deutlich sinken. Der in Abbildung 4 des Trendszenarios dargestellte fossile Fernwärmeexport nach Wien entfällt.

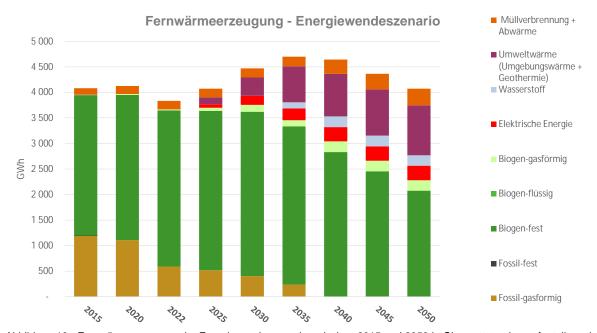


Abbildung 10 - Fernwärmeerzeugung im Energiewendeszenario zwischen 2015 und 2050 in Gigawattstunden aufgeteilt nach Energieträgern

6. Gegenüberstellung der Szenarien

6.1. Treibhausgasemissionsentwicklung gesamt

Die historischen Daten zeigen, dass vom Höchstwert 2005 (22,2 Mio. t CO₂eq) bis 2022 bereits ein deutlicher Rückgang auf 15,2 Mio. t CO₂eq erreicht werden konnte. Ein Teil dieses Trends ist jedoch auf Einmaleffekte (bedingt durch Pandemie, Energiekrise und einen Produktionsausfall in der Raffinerie Schwechat³) zurückzuführen, weshalb in beiden Szenarien ein Wiederanstieg für das Jahr 2023 angenommen wurde.

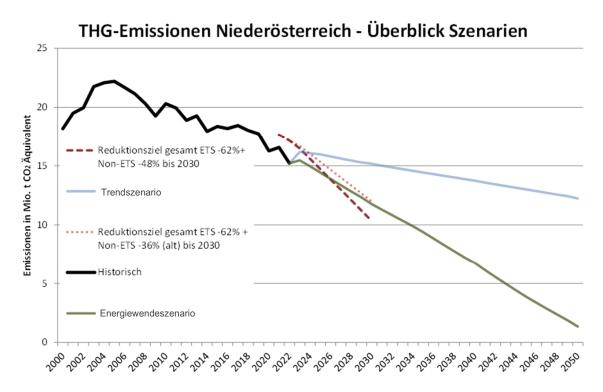


Abbildung 11 - Entwicklung der Treibhausgasemissionen gesamt im Trendszenario und im Energiewendeszenario in Millionen Tonnen CO₂-Äquivalent aufgeteilt nach Sektoren. Reduktionspfade gemäß EU-Zielen bis 2030

Abbildung 11 stellt die Treibhausgasemissions-Reduktionspfade für Österreich gemäß EU-Vorgaben bis 2030 dar. Berechnet wurde eine Kombination aus den Zielen im Emissionshandels- und im Nicht-Emissionshandels-Bereich. Dazu wurden zwei Reduktionsziele eingezeichnet (rote Linien), die zum einen auf das gemäß aktueller Effort-Sharing-Verordnung geltende und im Rahmen des Green-Deals nochmals verschärfte Reduktionsziel von minus 48 Prozent zwischen 2005 und 2030 abstellen und zum anderen auf das vormals geltende Reduktionsziel von minus 36 Prozent im bereits genannten Zeitraum.

Die prognostizierte Reduktion der gesamten Treibhausgasemissionen beträgt für das Trendszenario zwischen 2005 und 2030 minus 32 Prozent und nimmt bis 2050 auf minus 45 Prozent zu. Im

³ https://www.omv.com/de/news/220610-update-zum-zwischenfall-in-der-omv-raffinerie-schwechat

Energiewendeszenario kann zwischen 2005 und 2030 eine Reduktion der gesamten THG-Emissionen von minus 47 Prozent erreicht werden und bis 2050 eine Reduktion von insgesamt minus 94 Prozent.

6.2. Kennzahlen im Vergleich

6.2.1. Veränderung der Treibhausgasemissionen (THG)

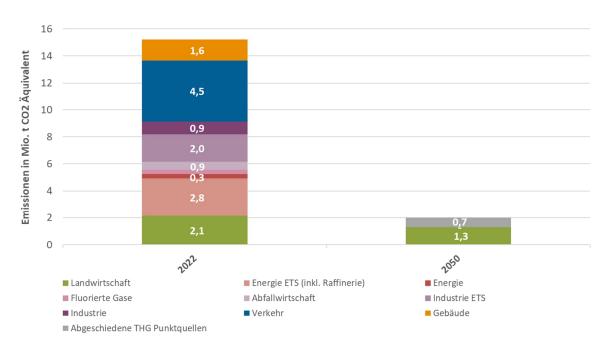
Emissionseinsparungen in den Szenarien	Trend	Trend	Energiewende	Energiewende
	2005 bis 2030	2005 bis 2050	2005 bis 2030	2005 bis 2050
Emissionshandel	-39 %	-37 %	-52 %	-100 %
Non-ETS	-27 %	-50 %	-44 %	-90 %
Gesamtemissionen	-32 %	-45 %	-47 %	-94 %

6.2.2. Veränderung des Endenergieverbrauchs

Endenergieeinsparungen				
in den Szenarien (im Vergleich zum	Trend	Trend	Energiewende	Energiewende
Durchschnitt der Jahre 2017 bis 2019)	Bis 2030	Bis 2050	Bis 2030	Bis 2050
Endenergieverbrauch	-1 %	-6 %	-8 %	-21 %

6.2.3. Veränderung des Anteils erneuerbarer Energieträger

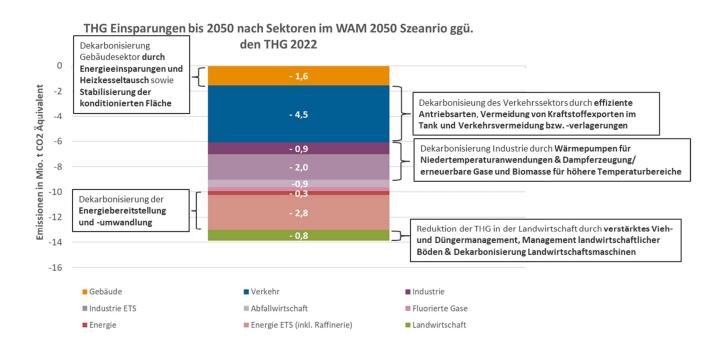
Anteil Erneuerbare	Trend	Trend	Energiewende	Energiewende
Energieträger in den Szenarien	im Jahr 2030	im Jahr 2050	im Jahr 2030	im Jahr 2050
Anteil am Endenergie- verbrauch gesamt ⁴	47 %	63 bis 71 %	55 bis 56 %	96 bis 100 %
Anteil am Stromverbrauch	100 %	100 %	100 %	100 %
Anteil am Endenergieverbrauch im Verkehrssektor	15 %	47 %	29 %	100 %


⁴ Beim Import von erneuerbaren E-Fuels ist der Prozentsatz entsprechend höher.

7. Anhang – Die wichtigsten Hebel für eine Reduktion der Treibhausgase (THG) bis 2050

<u>Die wichtigsten Hebel für eine Reduktion</u> <u>der Treibhausgase (THG) bis 2050</u>

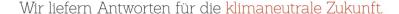
THG nach Sektoren 2022 und im WAM 2050 Szenario



Die gesamten Treibhausgasemissionen in Niederösterreich beliefen sich 2022 auf rd. 15,2 Mio. t CO₂-Äquivalente (THG-eq). Der größte Emittent war der Verkehrssektor mit rd. 4,5 Mio. THG-eq, gefolgt vom Energiesektor mit rd. 3,1 Mio. THG-eq und dem Industriesektor mit rd. 2,9 Mio. THG-eq. Damit verursachte der Verkehrssektor rd. 30%, der Energiesektor rd. 20% und der Industriesektor rd. 19% aller THG-Emissionen in Niederösterreich. Der Rest entfiel auf den Gebäudesektor und die Landwirtschaft bzw. in kleinerem Ausmaß auf den Bereich fluorierte Gase und Abfallwirtschaft. Im berechneten Szenario für das Zielbild Niederösterreich 2050 zeigt sich, dass im Jahr 2050 noch rd. 1,3 Mio. t THG-eq im Sektor Landwirtschaft verbleiben. Eine vollständige Kompensation dieser Restemissionen muss über THG-Senken (z.B. Aufforstung, Wiedervernässung von Böden) erfolgen. Rd. 0,7 Mio. t THG-eq aus THG-Punktquellen (Müllverbrennung und prozessbedingte Emissionen der Industrie) müssen durch CO₂-Abscheidung kompensiert werden.

Aus den Szenario-Berechnungen für das Zielbild 2050 ergeben sich die wichtigsten Hebel am Weg zur niederösterreichischen Klimaneutralität (WAM 2050 Szenario), die folgend genauer beschrieben werden. Dazu wurde versucht – wenn möglich – die THG-Einsparungen nach Subbereichen zu gliedern bzw. den Subbereichen Größenordnungen der THG-Einsparung zuzuweisen. Dabei handelt es sich um Schätzwerte, die im Rahmen des Projekts von der AEA

getroffen wurden. Beispielsweise wurde versucht abzuschätzen, wieviel der THG-Einsparungen im Verkehrssektor durch die Umstellung auf effizientere Antriebsarten, eine komplette Reduktion des Kraftstoffexports im Tank bzw. auf Verkehrsverlagerung- und Vermeidung zurückzuführen sind.


Dekarbonisierung im Verkehrssektor

Effiziente Antriebsarten				
THG-Einsparungen bis 2050 (ggü. 2022) Ca. 2,7 Mio. t CO ₂ -eq				
Maßgeblicher Kompetenzbereich	Bund			

Der größte Hebel im Verkehrsbereich ist ein Technologiewechsel der bestehenden Antriebsarten. Dadurch könnten ca. 2,7 Mio. t THG-eq eingespart werden. Durch den Wechsel auf elektrische Antriebe kann eine deutliche Effizienzsteigerung im Energieeinsatz ggü. konventionellen Verbrennungsmotoren von mehr als 60 % erzielt werden. Ein Wechsel auf wasserstoffbasierte Antriebe (Brennstoffzelle) würde eine Effizienzverbesserung von rd. 40% ggü. konventionellen Verbrennungsmotoren erzielen. Wasserstoffbasierte Antriebe kommen im Zielbild im Schwerverkehr und öffentlichen Verkehr (Busse) mit rd. 15% zum Einsatz, der Individualverkehr wird als komplett elektrifiziert angenommen. Insgesamt können durch die Umstellung auf effiziente Antriebsarten bis 2050 rd. 2,7 Mio. Mio. t THG-eq eingespart werden.

Beispiele Einflussmöglichkeit Land: spezifische Förderungen

Beispiele Einflussmöglichkeit Bund: Schaffung von Rahmenbedingungen und verkehrsspezifische gesetzliche Regelungen (z.B. Vorgaben zur Antriebsart bzw. Abgasnormen, Mineralölsteuer & fahrleistungsabhängige Maut, Normverbrauchsabgabe), Spezifische Förderung von effizienten Antrieben

Vermeidung von Kraftstoffexport im Tank				
THG-Einsparungen bis 2050 (ggü. 2022) Ca. 0,9 Mio. t CO ₂ -eq				
Maßgeblicher Kompetenzbereich	Bund			

Der Kraftstoffexport im Tank (KEX) wurde für Niederösterreich auf einen Anteil von rd. 20% geschätzt. Das bedeutet, dass rd. 20% der vertankten Treibstoffmengen zwar in Niederösterreich getankt, jedoch im Ausland verfahren werden. Dies betrifft insbesondere Diesel, da dieser zum Betanken von LKW verwendet wird und sich aufgrund des großen Tankvolumens besonders stark im KEX niederschlägt. Maßgeblich für den KEX sind Differenzen in den Treibstoffpreisen zwischen Österreich und seinen Nachbarländern. Eine Vermeidung des KEX würde Einsparungen von rd. 0,9 Mio. t THG-eq bewirken.

Beispiele Einflussmöglichkeit Land: -

Beispiele Einflussmöglichkeit Bund: Mineralölbesteuerung insbesondere bei Diesel (neben der steuerlichen Beeinflussung kann davon ausgegangen werden, dass bei einer EU-weit koordinierten Umstellung des Verkehrssektors auf Elektromobilität der Kraftstoffexport stark reduziert wird)

Verkehrsverlagerung und –vermeidung				
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 0,9 Mio. t CO ₂ -eq			
Maßgeblicher Kompetenzbereich	Bund & Land			

Verkehrsverlagerungen und -vermeidung implizieren Änderungen im Modal Split. Einerseits sollen Wege in Zukunft vermieden werden (z.B. über Teleworking), andererseits sollen Wege nach Möglichkeit auch auf klimafreundliche und effiziente Verkehrsmittel verlagert werden. Insbesondere die Verlagerung auf die Schiene im Personen- und Güterverkehr ist hierbei notwendig. Insgesamt können durch Verkehrsverlagerungen und -vermeidung bis 2050 rd. 0,9 Mio. t THG-eq eingespart werden.

Beispiele Einflussmöglichkeit Land: vorausschauende Raumplanung (z.B. Siedlungsentwicklung entlang von Hauptachsen), Ausbau und Attraktivierung öffentlicher Verkehr Busse, Parkraumbewirtschaftung, Geschwindigkeitsbeschränkungen (nicht im hochrangigen Straßennetz)

Beispiele Einflussmöglichkeit Bund: Ausbau und Attraktivierung Personen- und Güterverkehr Schiene, gezielte Vergabe von Verkehrsdienstleistungen, Güterverkehrsentwicklungen sind stark an europäische Entwicklungen gekoppelt

Dekarbonisierung von Energiebereitstellung und -umwandlung

Dekarbonisierung der Energieumwandlung (Raffinerie Schwechat)	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 2,8 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Bund

Mit einem Anteil von ca. 15% trugen die THG-Emissionen aus der Energieumwandlung von Erdöl in Erdölderivate (z.B. Diesel, Benzin, Schweröl, etc...) im Jahr 2022 maßgeblich zu den gesamten THG-Emissionen des Landes Niederösterreich bei. Die Dekarbonisierung der Raffinerie erfordert eine Umstellung der derzeitigen Prozesse der Energieumwandlung (Erdöl zu Derivaten) hin zur spezifischen Herstellung von Stoffen (z.B. synthetische Treibstoffe). Eine Dekarbonisierung solcher Herstellungsprozesse ist sehr energieintensiv und Bedarf u.a. einer hohen Menge an Wasserstoff. Die Herstellung der im Szenario für Niederösterreich errechneten Mengen an synthetischen Treibstoffen benötigen rd. 12,5-13 TWh Wasserstoff als Ausgangsstoff. Insgesamt können durch die Dekarbonisierung der Energieumwandlung rd. 2,8 Mio. t THG-eq eingespart werden.

Beispiele Einflussmöglichkeit Land: -

Beispiele Einflussmöglichkeit Bund: Strategische Dekarbonisierung des Umwandlungssektors (insb. mit Abstimmung OMV), Gemeinsame Lösung in enger Abstimmung auch mit dem Flughafen Wien da synthetische Treibstoffe insbesondere für den Flugverkehr notwendig sind.

Dekarbonisierung der Energieerzeugung	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 0,3 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Bund & Land

Die niederösterreichische Energieerzeugung von Elektrizität und Fernwärme basiert bereits sehr stark auf erneuerbaren Energien. Das Kraftwerk Theiß ist das letzte mit fossilen Energieträgern betriebene Wärmekraftwerk in Niederösterreich. Die Dekarbonisierung der niederösterreichischen Energieerzeugung bringt THG-Einsparungen von rd. 0,3 Mio. t THG-eq.

Beispiele Einflussmöglichkeit Land: Energieraumplanung (Zonierung/Vorrangzonen Wind und PV)

Beispiele Einflussmöglichkeit Bund: Gestaltung des rechtlichen Rahmens (Emissionshandel EU/Emissionszertifikategesetz, Umweltverträglichkeitsprüfungsgesetz, ElWG, EABG), gesetzlicher Rahmen zu Förderung erneuerbarer Energien (z.B. Ökostrom)

Dekarbonisierung im Industriesektor

Dekarbonisierung der Industrie	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 2,9 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Bund

U.a. in den Branchen Chemie und Petrochemie, Steine und Erden, Glas (dazu zählt auch die Zementherstellung), Papier und Druck sowie in der Nahrungsmittelindustrie wird vermehrt **Erdgas** in den spezifischen Prozessen verwendet. Die Dekarbonisierung niederösterreichischen Industrie erfordert in Zukunft einen verstärkten Einsatz von Wärmepumpen zur Bereitstellung von Raumwärme und Warmwasser bzw. Prozesswärme < 200 °C. Prozesswärme > 200 °C wird nach Möglichkeit durch Biomasse sowie für hohe Temperaturbereiche > 500 °C durch erneuerbare Gase bereitgestellt. Für die Kompensation prozessbedingter Emissionen (z.B. aus Zementherstellung) ist der Einsatz von Carbon Capture notwendig. Insgesamt können durch die Dekarbonisierung der Industrie rd. 2,9 Mio. t THG-eg eingespart werden.

Beispiele Einflussmöglichkeit Land: spezifische Förderungen

Beispiele Einflussmöglichkeit Bund: Anlagenrechtliche Regelungen (z.B. Gewerbeordnung), Emissionshandel EU/Emissionszertifikategesetz, Umweltverträglichkeitsprüfungsgesetz, spezifische Förderungen

Dekarbonisierung im Gebäudesektor

Heizkesseltausch	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 1 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Land

Derzeit sind in Niederösterreich noch rd. 80.000 Ölkessel und rd. 190.000 Gaskessel installiert. Im Zielbild wird ein Ausstieg aus ölbasierten Heizsystemen bis 2040 und ein Ausstieg aus gasbasierten Heizungen bis 2050 angenommen. Dies würde eine notwendige durchschnittliche Tauschrate bei Ölheizungen von rd. 4.500 Heizungen p.a. und eine notwendige durchschnittliche Tauschrate bei Gasheizungen von rd. 7.000 Heizungen p.a. bedeuten. Insgesamt können durch den Heizkesseltausch rd. 1 Mio. t THG-eq eingespart werden.

Beispiele Einflussmöglichkeit Land: Energieraumplanung, gesetzlicher Rahmen (Bauordnung, Bautechnikverordnung, Wohnbauförderung), Alternativenprüfung laut Vereinbarung gem. Art. 15a B-VG (Maßnahmen im Gebäudesektor zum Zweck der Reduktion des Ausstoßes an Treibhausgasen), Förderungen Heizkesseltausch

Beispiele Einflussmöglichkeit Bund: Vereinbarung gem. Art. 15a B-VG (Maßnahmen im Gebäudesektor zum Zweck der Reduktion des Ausstoßes an Treibhausgasen), Förderungen Heizkesseltausch

Energieeinsparungen	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 0,5 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Land

Energieeinsparungen im Gebäudebereich umfassen Energieeinsparungen durch energieeffiziente Sanierungen sowie den Abriss alter Gebäude und Neubau. Auch eine Veränderung der Heizgradtage trägt zu einem geringeren Raumwärmebedarf bei. Zusätzlich besonders relevant ist dabei die langfristige Stabilisierung der konditionierten Fläche im niederösterreichischen Gebäudesektor. Historisch ist die konditionierte Fläche je Einwohner in Niederösterreich bisher stetig gewachsen. Rd. 0,5 Mio. t THG-eq können durch Energieeinsparungen im Gebäudesektor bis 2050 eingespart werden.

Beispiele Einflussmöglichkeit Land: Energieraumplanung, gesetzlicher Rahmen (Bauordnung, Bautechnikverordnung, Wohnbauförderung), Alternativenprüfung laut Vereinbarung gem. Art. 15a B-VG (Maßnahmen im Gebäudesektor zum Zweck der Reduktion des Ausstoßes an Treibhausgasen), Förderungen Heizkesseltausch

Beispiele Einflussmöglichkeit Bund: Vereinbarung gem. Art. 15a B-VG (Maßnahmen im Gebäudesektor zum Zweck der Reduktion des Ausstoßes an Treibhausgasen), Förderungen Heizkesseltausch, Bundes-Energieeffizienzgesetz

Dekarbonisierung in der Landwirtschaft

Viehmanagement	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 0,4 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Bund & Land

Viehmanagement in der Landwirtschaft stellt den größten Hebel im Sektor Landwirtschaft dar. Die THG aus der Tierhaltung – insbesondere Rinder – sind dabei der ausschlaggebendste Faktor. Daher kommt es im Zielbild u.a. zu einer Reduktion der Viehbestände (Rinder, Schweine, Geflügel) sowie zum Einsatz von Futtermittelzusatzstoffen bei der Fütterung. Eine Reduktion des Rinder- und Schweinebestandes ist historisch bereits in Niederösterreich zu beobachten. Insgesamt können durch Viehmanagement rd. 0,4 Mio. t THG-eq eingespart werden.

Beispiele Einflussmöglichkeit Land: Raumplanung, Landes Landwirtschafts- und Tierhaltegesetze

Beispiele Einflussmöglichkeit Bund: Rechtlicher Rahmen (Bundes Landwirtschaftsgesetz, Bundestierschutzgesetz, Düngemittelgesetz)

Düngermanagement und Management landwirtschaftlicher Böden	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 0,2 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Bund & Land

Durch Management landwirtschaftlicher Böden und damit verbundenem Düngereinsatz können weitere THG-Emissionen im Sektor Landwirtschaft eingespart werden. Der angenommene Rückgang von Ackerland, der sich historisch auch in Niederösterreich zeigt, erfordert ebenfalls weniger Einsatz von Düngemitteln. Insgesamt können durch Düngermanagement und Management landwirtschaftlicher Böden rd. 0,2 Mio. t THG-eg eingespart werden.

Beispiele Einflussmöglichkeit Land: Raumplanung, Landes Landwirtschafts- und Tierhaltegesetze

Beispiele Einflussmöglichkeit Bund: Rechtlicher Rahmen (Bundes Landwirtschaftsgesetz, Düngemittelgesetz)

Dekarbonisierung der Landwirtschaftsmaschinen	
THG-Einsparungen bis 2050 (ggü. 2022)	Ca. 0,2 Mio. t CO ₂ -eq
Maßgeblicher Kompetenzbereich	Bund

Eine Dekarbonisierung der Landwirtschaftsmaschinen erfolgt im Zielbild durch die Substitution des bisher eingesetzten Diesels durch biogenen Treibstoff in der Höhe von rd. 1 TWh. Insgesamt können durch die Dekarbonisierung von Landwirtschaftsmaschinen rd. 0,2 Mio. t THG-eq eingespart werden.

Beispiele Einflussmöglichkeit Land: Spezifische Förderungen

Beispiele Einflussmöglichkeit Bund: Rechtlicher Rahmen (z.B. Kraftstoff-VO)